White	Red	Orange	Yellow	Green	Blue
I know all pairs of numbers that add to make 20. Example: $\begin{aligned} & 17+3=20 \\ & 11+9=20 \end{aligned}$	I know all pairs of numbers that add to 10 and can use this to work out pairs of numbers that add to 100. Example: $\begin{aligned} & 1+9=10 \\ & 10+90=100 \end{aligned}$	I can use my understanding of number facts to solve addition and subtraction calculations. Example: $\begin{aligned} & 17+3= \\ & 80+20= \\ & 100-30= \\ & 20-16= \end{aligned}$	I can double all numbers up to 20. Example: $\begin{aligned} & 6+6=12 \\ & 9+9=18 \\ & 15+15=30 \end{aligned}$	I can partition two-digit numbers into different combinations of tens and ones. Example: $23=2$ tens and 3 ones or 1 ten and 13 ones $34=3$ tens and 4 ones or 2 tens and 14 ones	I can add 2 two-digit numbers within 100 (e.g. $48+35$) and can demonstrate my method. Example: $\begin{aligned} & 48+35=83 \\ & 40+30=70 \\ & 8+5=13 \\ & 70+13=83 \text { or } \\ & \\ & 48+30=78 \\ & 78+5=83 \end{aligned}$
$\because \because$	\because ® \because				
Indigo	Violet	Black	Bronze	Silver	Gold
I recognise the inverse relationships between addition and subtraction and use this to check calculations and work out missing number problems. (e.g. $\Delta-14=28$) Example: $\begin{aligned} & 17+\Delta=20 \\ & 20-\Delta=16 \\ & 100-30=0 \\ & 100-0=60 \end{aligned}$	I can recall and use multiplication and division facts for the 10 x table up to 12×10. Example: $\begin{aligned} & 1 \times 10=10 \\ & 2 \times 10=20 \\ & 8 \times 10=80 \end{aligned}$ $\begin{aligned} & 80 \div 10=8 \\ & 100 \div 10=10 \end{aligned}$	I can recall and use multiplication and division facts for the 2 x table up to 12×2. Example: $\begin{aligned} & 6 \times 2=12 \\ & 8 \times 2=16 \end{aligned}$ $16 \div 2=8$	I can work out half of an even number by dividing by two. Example: $1 / 2$ of $16=8$ $16 \div 2=8$	I can recall and use multiplication and division facts for the 5 x table up to 12×5. Example: $\begin{aligned} & 5 \times 5=25 \\ & 8 \times 5=40 \end{aligned}$ $40 \div 5=8$	I can use different coins to make the same amount (e.g. pupil uses coins to make 50p in different ways. Example: $\begin{aligned} & 50 p= \\ & 10 p+10 p+10 p+ \\ & 10 p+10 p \\ & 20 p+20 p+10 p \end{aligned}$
$\because \bigcirc$					

